博客
关于我
python入门-----生成器generator
阅读量:209 次
发布时间:2019-02-28

本文共 991 字,大约阅读时间需要 3 分钟。

生成器(Generator)是Python中一种轻量级的迭代工具,它允许我们在不预先创建完整数据结构的情况下,逐步生成和迭代数据。这种机制特别适用于处理大量数据或按需生成数据的情况。

生成器的概念

生成器通过yield关键字逐步返回值,而不是像函数那样一次性返回所有值。yield语句可以暂停生成器的执行,并在程序离开时恢复生成器的执行位置。生成器可以看作是协同程序(coroutine),即可以被挂起、恢复或重启的函数。

例1:简单的生成器

def myGen():    print('生成器被执行!')    yield 1    yield 2
myG = myGen()next(myG)  # 输出: 生成器被执行!next(myG)  # 输出: 1next(myG)  # 输出: 2

例2:斐波那契数列生成器

def libs():    a, b = 0, 1    while True:        a, b = b, a + b        yield a
for each in libs():    if each > 100:        break    print(each, end=' ')

输出:

1 1 2 3 5 8 13 21 34 55 89

next()函数

next()函数用于逐个调用生成器的yield值。通过next()函数,我们可以按需获取生成器返回的值,而无需一次性加载所有数据。

创建生成器

生成器可以通过将列表生成式的[]改为()来创建。例如:

e = (i for i in range(10))print(e)

输出为:

at 0x0000026F1A8D4C48>

生成器的使用

生成器可以通过for循环迭代使用:

g = (x for x in range(2))print(next(g))  # 输出: 0print(next(g))  # 输出: 1print(next(g))  # 输出: Traceback (most recent call last): ...

生成器的优势在于,它只生成需要的值,节省了内存。与传统的列表相比,生成器在处理大数据量时更加高效。

通过以上示例可以看出,生成器是一种灵活且高效的数据处理工具,广泛应用于处理大型数据集、网络请求等场景。

转载地址:http://fvsi.baihongyu.com/

你可能感兴趣的文章
nessus快速安装使用指南(非常详细)零基础入门到精通,收藏这一篇就够了
查看>>
Nessus漏洞扫描教程之配置Nessus
查看>>
Nest.js 6.0.0 正式版发布,基于 TypeScript 的 Node.js 框架
查看>>
NetApp凭借领先的混合云数据与服务把握数字化转型机遇
查看>>
NetBeans IDE8.0需要JDK1.7及以上版本
查看>>
netcat的端口转发功能的实现
查看>>
netfilter应用场景
查看>>
netlink2.6.32内核实现源码
查看>>
Netpas:不一样的SD-WAN+ 保障网络通讯品质
查看>>
NetScaler的常用配置
查看>>
netsh advfirewall
查看>>
NETSH WINSOCK RESET这条命令的含义和作用?
查看>>
Netty WebSocket客户端
查看>>
netty 主要组件+黏包半包+rpc框架+源码透析
查看>>
Netty 异步任务调度与异步线程池
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
Netty事件注册机制深入解析
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>